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Randomized controlled trials (RCTs) are considered the 
gold-standard experimental design for providing evidence 
of the safety and efficacy of an intervention1,2. Trial results, if 

adequately reported, have the potential to inform regulatory deci-
sions, clinical guidelines and health policy. It is therefore crucial 
that RCTs are reported with transparency and completeness so that 
readers can critically appraise the trial methods and findings and 
assess the presence of bias in the results3–5.

The CONSORT statement provides evidence-based recommen-
dations to improve the completeness of the reporting of RCTs. The 
statement was first introduced in 1996 and has since been widely 
endorsed by medical journals internationally5. Over the past two 
decades, it has undergone two updates and has demonstrated a sub-
stantial positive impact on the quality of RCT reports6,7. The most 
recent CONSORT 2010 statement provides a 25-item checklist of 
the minimum reporting content applicable to all RCTs, but it rec-
ognizes that certain interventions may require extension or elabora-
tion of these items. Several such extensions exist8–13.

AI is an area of enormous interest with strong drivers to accel-
erate new interventions through to publication, implementation  
and market14. While AI systems have been researched for some  
time, recent advances in deep learning and neural networks have 
gained considerable interest for their potential in health applica-
tions. Examples of such applications are wide ranging and include 
AI systems for screening and triage15,16, diagnosis17–20,prognosti
cation21,22, decision support23 and treatment recommendation24. 
However, in the most recent cases, published evidence has consisted 
of in silico, early-phase validation. It has been recognized that most 
recent AI studies are inadequately reported and existing reporting 
guidelines do not fully cover potential sources of bias specific to 
AI systems25. The welcome emergence of RCTs seeking to evalu-
ate newer interventions based on, or including, an AI component 
(called ‘AI interventions’ here)23,26–31 has similarly been met with 
concerns about the design and reporting25,32–34. This has highlighted 
the need to provide reporting guidance that is ‘fit for purpose’ in 
this domain.
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The CONSORT 2010 statement provides minimum guidelines for reporting randomized trials. Its widespread use has been 
instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recogni-
tion that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate 
impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials–Artificial Intelligence) extension 
is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with 
its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional 
Trials–Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review 
and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in 
a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders) and refined 
through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered suffi-
ciently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. 
CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills 
required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, 
the human–AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and com-
pleteness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general reader-
ship, to understand, interpret and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes.

NATuRe MeDICINe | VOL 26 | SEPTEMBER 2020 | 1364–1374 | www.nature.com/naturemedicine1364

mailto:a.denniston@bham.ac.uk
http://orcid.org/0000-0003-2434-4206
http://orcid.org/0000-0002-1856-837X
http://orcid.org/0000-0001-7849-0087
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-020-1034-x&domain=pdf
http://www.nature.com/naturemedicine


Consensus statementNATuRe MeDICINe

CONSORT-AI (as part of the SPIRIT-AI and CONSORT-AI ini-
tiative) is an international initiative supported by CONSORT and 
the EQUATOR (Enhancing the Quality and Transparency of Health 
Research) Network to evaluate the existing CONSORT 2010 state-
ment and to extend or elaborate this guidance where necessary, to 
support the reporting of clinical trials for AI interventions35,36. It is 
complementary to the SPIRIT-AI statement, which aims to pro-
mote high-quality protocol reporting for AI trials. This Consensus 
Statement describes the methods used to identify and evaluate can-
didate items and gain consensus. In addition, it also provides the 
CONSORT-AI checklist, which includes the new extension items 
and their accompanying explanations.

Methods
The SPIRIT-AI and CONSORT-AI extensions were simultaneously 
developed for clinical trial protocols and trial reports. An announce-
ment for the SPIRIT-AI and CONSORT-AI initiative was published 
in October 2019 (ref. 35), and the two guidelines were registered as 
reporting guidelines under development on the EQUATOR library 
of reporting guidelines in May 2019. Both guidelines were devel-
oped in accordance with the EQUATOR Network’s methodological 
framework37. The SPIRIT-AI and CONSORT-AI Steering Group, 
consisting of 15 international experts, was formed to oversee the 

conduct and methodology of the study. Definitions of key terms are 
provided in the glossary (Box 1).

ethical approval
This study was approved by the ethical review committee at the 
University of Birmingham, UK (ERN_19-1100). Participant infor-
mation was provided to Delphi participants electronically before 
survey completion and before the consensus meeting. Delphi par-
ticipants provided electronic informed consent, and written consent 
was obtained from consensus meeting participants.

Literature review and candidate item generation
An initial list of candidate items for the SPIRIT-AI and 
CONSORT-AI checklists was generated through review of the 
published literature and consultation with the Steering Group and 
known international experts. A search was performed on 13 May 
2019 using the terms ‘artificial intelligence’, ‘machine learning’ and 
‘deep learning’ to identify existing clinical trials for AI interventions 
listed within the US National Library of Medicine’s clinical trial reg-
istry (ClinicalTrials.gov). There were 316 registered trials, of which 
62 were completed and 7 had published results30,38–43. Two studies 
were reported with reference to the CONSORT statement30,42, and 
one study provided an unpublished trial protocol42. The Operations 

Box 1 | Glossary

Artificial Intelligence The science of developing computer systems 
which can perform tasks normally requiring human intelligence.

AI intervention A health intervention that relies upon an AI/ML 
component to serve its purpose.

CONSORT Consolidated Standards of Reporting Trials.

CONSORT-AI extension item An additional checklist item 
to address AI-specific content that is not adequately covered by 
CONSORT 2010.

Class-activation map Class-activation maps are particularly 
relevant to image classification AI interventions. Class-activation 
maps are visualizations of the pixels that had the greatest influence 
on predicted class, by displaying the gradient of the predicted 
outcome from the model with respect to the input. They are also 
referred to as ‘saliency maps’ or ‘heat maps’.

Health outcome Measured variables in the trial that are used to 
assess the effects of an intervention.

Human–AI interaction The process of how users (humans) 
interact with the AI intervention, for the AI intervention to 
function as intended.

Clinical outcome Measured variables in the trial which are used 
to assess the effects of an intervention.

Delphi study A research method that derives the collective opinions 
of a group through a staged consultation of surveys, questionnaires, 
or interviews, with an aim to reach consensus at the end.

Development environment The clinical and operational settings 
from which the data used for training the model is generated. This 
includes all aspects of the physical setting (such as geographical 
location, physical environment), operational setting (such as 
integration with an electronic record system, installation on a 
physical device) and clinical setting (such as primary, secondary 
and/or tertiary care, patient disease spectrum).

Fine-tuning Modifications or additional training performed on 
the AI intervention model, done with the intention of improving 
its performance.

Input data The data that need to be presented to the AI intervention 
to allow it to serve its purpose.

Machine learning A field of computer science concerned with the 
development of models/algorithms that can solve specific tasks by 
learning patterns from data, rather than by following explicit rules. 
It is seen as an approach within the field of AI.

Operational environment The environment in which the AI 
intervention will be deployed, including the infrastructure 
required to enable the AI intervention to function.

Output data The predicted outcome given by the AI intervention 
based on modeling of the input data. The output data can be 
presented in different forms, including a classification (including 
diagnosis, disease severity or stage, or recommendation such as 
referability), a probability, a class activation map, etc. The output 
data typically provide additional clinical information and/or 
trigger a clinical decision.

Performance error Instances in which the AI intervention 
fails to perform as expected. This term can describe different 
types of failures, and it is up to the investigator to specify what 
should be considered a performance error, preferably based on 
prior evidence. This can range from small decreases in accuracy 
(compared to expected accuracy) to erroneous predictions or the 
inability to produce an output, in certain cases.

SPIRIT Standard Protocol Items: Recommendations for 
Interventional Trials.

SPIRIT-AI An additional checklist item to address AI-specific 
content that is not adequately covered by SPIRIT 2013.

SPIRIT-AI elaboration item Additional considerations to an 
existing SPIRIT 2013 item when applied to AI interventions.
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Team (X.L., S.C.R., M.J.C. and A.K.D.) identified AI-specific consid-
erations from these studies and reframed them as candidate report-
ing items. The candidate items were also informed by findings from 
a previous systematic review that evaluated the diagnostic accuracy 
of deep-learning systems for medical imaging25. After consulta-
tion with the Steering Group and additional international experts 
(n = 19), 29 candidate items were generated, 26 of which were rel-
evant for both SPIRIT-AI and CONSORT-AI and 3 of which were 
relevant only for CONSORT-AI. The Operations Team mapped 
these items to the corresponding SPIRIT and CONSORT items, 
revising the wording and providing explanatory text as required to 
contextualize the items. These items were included in subsequent 
Delphi surveys.

Delphi consensus process
In September 2019, 169 key international experts were invited to 
participate in the online Delphi survey to vote upon the candidate 
items and suggest additional items. Experts were identified and 
contacted via the Steering Group and were allowed one round of 
‘snowball’ recruitment in which contacted experts could suggest 
additional experts. In addition, individuals who made contact fol-
lowing publication of the announcement were included35. The 
Steering Group agreed that individuals with expertise in clini-
cal trials and AI and machine learning (ML), as well as key users 
of the technology, should be well represented in the consultation. 
Stakeholders included healthcare professionals, methodologists, 
statisticians, computer scientists, industry representatives, journal 
editors, policy makers, health ‘informaticists’, experts in law and 
ethics, regulators, patients and funders. Participant characteristics 
are described in Supplementary Table 1. Two online Delphi sur-
veys were conducted. DelphiManager software (version 4.0), devel-
oped and maintained by the COMET (Core Outcome Measures in 
Effectiveness Trials) initiative, was used to undertake the e-Delphi 
survey. Participants were given written information about the 
study and were asked to provide their level of expertise within the 
fields of (i) AI/ML, and (ii) clinical trials. Each item was presented 
for consideration (26 for SPIRIT-AI and 29 for CONSORT-AI). 
Participants were asked to vote on each item using a 9-point scale, 
as follows: 1–3, not important; 4–6, important but not critical; and 
7–9, important and critical. Respondents provided separate ratings 
for SPIRIT-AI and CONSORT-AI. There was an option to opt out of 
voting for each item, and each item included space for free text com-
ments. At the end of the Delphi survey, participants had the oppor-
tunity to suggest new items. 103 responses were received for the first 
Delphi round, and 91 responses (88% of participants from round 
one) were received for the second round. The results of the Delphi 
survey informed the subsequent international consensus meeting. 
12 new items were proposed by the Delphi study participants and 
were added for discussion at the consensus meeting. Data collected 
during the Delphi survey were anonymized, and item-level results 
were presented at the consensus meeting for discussion and voting.

The two-day consensus meeting took place in January 2020 and 
was hosted by the University of Birmingham, UK, to seek consensus 
on the content of SPIRIT-AI and CONSORT-AI. 31 international 
stakeholders from among the Delphi survey participants were 
invited to discuss the items and vote on their inclusion. Participants 
were selected to achieve adequate representation from all the stake-
holder groups. 41 items were discussed in turn, comprising the 29 
items generated in the initial literature review and item-generation 
phase (26 items relevant to both SPIRIT-AI and CONSORT-AI; 3 
items relevant only to CONSORT-AI) and the 12 new items pro-
posed by participants during the Delphi surveys. Each item was pre-
sented to the consensus group, alongside its score from the Delphi 
exercise (median and interquartile ranges) and any comments made 
by Delphi participants related to that item. Consensus-meeting par-
ticipants were invited to comment on the importance of each item 

and whether the item should be included in the AI extension. In 
addition, participants were invited to comment on the wording of 
the explanatory text accompanying each item and the position of 
each item relative to the SPIRIT 2013 and CONSORT 2010 check-
lists. After open discussion of each item and the option to adjust 
wording, an electronic vote took place, with the option to include or 
exclude the item. An 80% threshold for inclusion was pre-specified 
and deemed reasonable by the Steering Group to demonstrate 
majority consensus. Each stakeholder voted anonymously using 
Turning Point voting pads (Turning Technologies, version 8.7.2.14).

Checklist pilot
Following the consensus meeting, attendees were given the oppor-
tunity to make final comments on the wording and agree that the 
updated SPIRIT-AI and CONSORT-AI items reflected discussions 
from the meeting. The Operations Team assigned each item as an 
extension or elaboration item on the basis of a decision tree and 
produced a penultimate draft of the SPIRIT-AI and CONSORT-AI 
checklists (Supplementary Fig. 1). A pilot of the penultimate check-
lists was conducted with 34 participants to ensure clarity of word-
ing. Experts participating in the pilot included the following: (a) 
Delphi participants who did not attend the consensus meeting, 
and (b) external experts who had not taken part in the develop-
ment process but who had reached out to the Steering Group after 
the Delphi study commenced. Final changes were made on word-
ing only to improve clarity for readers, by the Operations Team 
(Supplementary Fig. 2).

Recommendations
CONSORT-AI checklist items and explanation. The CONSORT- 
AI extension recommends that 14 new checklists items be added to 
the existing CONSORT 2010 statement (11 extensions and 3 elab-
orations). These items were considered sufficiently important for 
clinical-trial reports for AI interventions that they should be rou-
tinely reported in addition to the core CONSORT 2010 checklist 
items. Table 1 lists the CONSORT-AI items.

The 14 items below passed the threshold of 80% for inclusion at 
the consensus meeting. CONSORT-AI 2a, CONSORT-AI 5 (ii) and 
CONSORT-AI 19 each resulted from the merging of two items after 
discussion with the consensus group. CONSORT-AI 4a (i) and (ii) 
was split into two items for clarity and was voted upon separately. 
CONSORT-AI 5(iii) did not fulfill the criteria for inclusion on the 
basis of its initial wording (77% vote to include); however, after 
extensive discussion and rewording, the consensus group unani-
mously supported a re-vote, at which point it passed the inclusion 
threshold (97% to include). The Delphi and voting results for each 
included and excluded item are described in Supplementary Table 2.

Title and abstract
CONSORT-AI 1a,b (i) Elaboration: Indicate that the intervention 
involves artificial intelligence/machine learning in the title and/or  
abstract and specify the type of model. Explanation. Indicating 
in the title and/or abstract of the trial report that the intervention 
involves a form of AI is encouraged, as it immediately identifies the 
intervention as an AI/ML intervention and also serves to facilitate 
indexing and searching of the trial report. The title should be under-
standable by a wide audience; therefore, a broader umbrella term 
such as ‘artificial intelligence’ or ‘machine learning’ is encouraged. 
More-precise terms should be used in the abstract, rather than the 
title, unless they are broadly recognized as being a form of AI/ML.  
Specific terminology relating to the model type and architecture 
should be detailed in the abstract.

CONSORT-AI 1a,b (ii) Elaboration: State the intended use of 
the AI intervention within the trial in the title and/or abstract. 
Explanation. Describe the intended use of the AI intervention in the 
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Table 1 | CONSORT-AI checklist

Section CONSORT 2010 itema CONSORT-AI item Addressed 
on page 
numberb

Title and abstract

Title and Abstract 1a Identification as a randomized trial in the 
title

CONSORT-AI 1a,b 
Elaboration

(i) Indicate that the intervention involves 
artificial intelligence/machine learning in 
the title and/or abstract and specify the 
type of model.

1b Structured summary of trial design, 
methods, results, and conclusions (for 
specific guidance see CONSORT for 
abstracts)

(ii) State the intended use of the AI 
intervention within the trial in the title and/
or abstract.

Introduction

Background and 
objectives

2a Scientific background and explanation of 
rationale

CONSORT-AI 2a 
(i) Extension

Explain the intended use of the AI 
intervention in the context of the clinical 
pathway, including its purpose and its 
intended users (for example, healthcare 
professionals, patients, public).

2b Specific objectives or hypotheses

Methods

Trial design 3a Description of trial design (such as 
parallel, factorial) including allocation 
ratio

3b Important changes to methods after 
trial commencement (such as eligibility 
criteria), with reasons

Participants 4a Eligibility criteria for participants CONSORT-AI 4a 
(i) Elaboration

State the inclusion and exclusion criteria at 
the level of participants.

CONSORT-AI 4a 
(ii) Extension

State the inclusion and exclusion criteria at 
the level of the input data.

4b Settings and locations where the data 
were collected

CONSORT-AI 4b 
Extension

Describe how the AI intervention was 
integrated into the trial setting, including 
any onsite or offsite requirements.

Interventions 5 The interventions for each group with 
sufficient details to allow replication, 
including how and when they were 
actually administered

CONSORT-AI 5 
(i) Extension

State which version of the AI algorithm was 
used.

CONSORT-AI 5 
(ii) Extension

Describe how the input data were acquired 
and selected for the AI intervention.

CONSORT-AI 5 
(iii) Extension

Describe how poor quality or unavailable 
input data were assessed and handled.

CONSORT-AI 5 
(iv) Extension

Specify whether there was human–AI 
interaction in the handling of the input data, 
and what level of expertise was required 
of users.

CONSORT-AI 5 
(v) Extension

Specify the output of the AI intervention

CONSORT-AI 5 
(vi) Extension

Explain how the AI intervention’s outputs 
contributed to decision-making or other 
elements of clinical practice.

Outcomes 6a Completely defined pre-specified primary 
and secondary outcome measures, 
including how and when they were 
assessed

6b Any changes to trial outcomes after the 
trial commenced, with reasons

Sample size 7a How sample size was determined

7b When applicable, explanation of any 
interim analyses and stopping guidelines

Continued
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Section CONSORT 2010 itema CONSORT-AI item Addressed 
on page 
numberb

Randomization

Sequence generation 8a Method used to generate the random 
allocation sequence

8b Type of randomization; details of any 
restriction (such as blocking and block 
size)

Allocation 
concealment 
mechanism

9 Mechanism used to implement the 
random allocation sequence (such as 
sequentially numbered containers), 
describing any steps taken to conceal 
the sequence until interventions were 
assigned

Implementation 10 Who generated the random allocation 
sequence, who enrolled participants, 
and who assigned participants to 
interventions

Blinding 11a If done, who was blinded after 
assignment to interventions (for example, 
participants, care providers, those 
assessing outcomes) and how

11b If relevant, description of the similarity of 
interventions

Statistical methods 12a Statistical methods used to compare 
groups for primary and secondary 
outcomes

12b Methods for additional analyses, such as 
subgroup analyses and adjusted analyses

Results

Participant flow (a 
diagram is strongly 
recommended)

13a For each group, the numbers of 
participants who were randomly assigned, 
received intended treatment, and were 
analyzed for the primary outcome

13b For each group, losses and exclusions 
after randomization, together with 
reasons

Recruitment 14a Dates defining the periods of recruitment 
and follow-up

14b Why the trial ended or was stopped

Baseline data 15 A table showing baseline demographic 
and clinical characteristics for each group

Numbers analyzed 16 For each group, number of participants 
(denominator) included in each analysis 
and whether the analysis was by original 
assigned groups

Outcomes and 
estimation

17a For each primary and secondary outcome, 
results for each group, and the estimated 
effect size and its precision (such as 95% 
confidence interval)

17b For binary outcomes, presentation of 
both absolute and relative effect sizes is 
recommended

Ancillary analyses 18 Results of any other analyses performed, 
including subgroup analyses and adjusted 
analyses, distinguishing pre-specified 
from exploratory

Continued

Table 1 | CONSORT-AI checklist (continued)
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trial report title and/or abstract. This should describe the purpose 
of the AI intervention and the disease context26,44. Some AI inter-
ventions may have multiple intended uses, or the intended use may 
evolve over time. Therefore, documenting this allows readers to 
understand the intended use of the algorithm at the time of the trial.

Introduction
CONSORT-AI 2a (i) Extension: Explain the intended use for the 
AI intervention in the context of the clinical pathway, includ-
ing its purpose and its intended users (for example, healthcare 
professionals, patients, public). Explanation. In order to clarify 
how the AI intervention is intended to fit into a clinical pathway, a 
detailed description of its role should be included in the background 
of the trial report. AI interventions may be designed to interact with 
different users, including healthcare professionals, patients and the 
public, and their roles can be wide-ranging (for example, the same 
AI intervention could theoretically be replacing, augmenting or 
adjudicating components of clinical decision-making). Clarifying 
the intended use of the AI intervention and its intended user helps 
readers understand the purpose for which the AI intervention was 
evaluated in the trial.

Methods
CONSORT-AI 4a (i) Elaboration: State the inclusion and exclu-
sion criteria at the level of participants. Explanation. The inclu-
sion and exclusion criteria should be defined at the participant level 
as per usual practice in non-AI interventional trial reports (Fig. 1). 
This is distinct from the inclusion and exclusion criteria made at the 
input-data level, which is addressed in item 4a (ii).

CONSORT-AI 4a (ii) Extension: State the inclusion and exclu-
sion criteria at the level of the input data. Explanation. ‘Input  
data’ refers to the data required by the AI intervention to serve its  

purpose (for example, for a breast-cancer diagnostic system, the  
input data could be the unprocessed or vendor-specific post- 
processing mammography scan upon which a diagnosis is being 
made; for an early-warning system, the input data could be physi-
ological measurements or laboratory results from the electronic  
health record). The trial report should pre-specify if there were min-
imum requirements for the input data (such as image resolution, 
quality metrics or data format) that determined pre-randomization 
eligibility. It should specify when, how and by whom this was 
assessed. For example, if a participant met the eligibility criteria 
for lying flat for a CT scan as per item 4a (i), but the scan quality 
was compromised (for any given reason) to such a level that it was 
deemed unfit for use by the AI system, this should be reported as 
an exclusion criterion at the input-data level. Note that where input 
data are acquired after randomization, any exclusion is considered 
to be from the analysis, not from enrollment (CONSORT item 13b 
and Fig. 1).

CONSORT-AI 4b Extension: Describe how the AI intervention 
was integrated into the trial setting, including any onsite or offsite 
requirements. Explanation. There are limitations to the generaliz-
ability of AI algorithms, one of which is when they are used outside 
of their development environment45,46. AI systems are dependent 
on their operational environment, and the report should provide 
details of the hardware and software requirements to allow technical 
integration of the AI intervention at each study site. For example, 
it should be stated if the AI intervention required vendor-specific 
devices, if there was specialized computing hardware at each site, 
or if the site had to support cloud integration, particularly if this 
was vendor specific. If any changes to the algorithm were required 
at each study site as part of the implementation procedure (such as 
fine-tuning the algorithm on local data), then this process should 
also be clearly described.

Section CONSORT 2010 itema CONSORT-AI item Addressed 
on page 
numberb

Harms 19 All important harms or unintended effects 
in each group (for specific guidance see 
CONSORT for harms)

CONSORT-AI 19 
Extension

Describe results of any analysis of 
performance errors and how errors were 
identified, where applicable. If no such 
analysis was planned or done, justify why 
not.

Discussion

Limitations 20 Trial limitations, addressing sources 
of potential bias, imprecision, and, if 
relevant, multiplicity of analyses

Generalizability 21 Generalizability (external validity, 
applicability) of the trial findings

Interpretation 22 Interpretation consistent with results, 
balancing benefits and harms, and 
considering other relevant evidence

Other Information

Registration 23 Registration number and name of trial 
registry

Protocol 24 Where the full trial protocol can be 
accessed, if available

Funding 25 Sources of funding and other support 
(such as supply of drugs), role of funders

CONSORT-AI 25 
Extension

State whether and how the AI intervention 
and/or its code can be accessed, including 
any restrictions to access or re-use.

aWe strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. bIndicates page numbers to be completed 
by authors during protocol development.

Table 1 | CONSORT-AI checklist (continued)
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CONSORT-AI 5 (i) Extension: State which version of the AI  
algorithm was used. Explanation. Similar to other forms of software 
as a medical device, AI systems are likely to undergo multiple itera-
tions and updates during their lifespan. It is therefore important to 
specify which version of the AI system was used in the clinical trial, 
whether this is the same as the version evaluated in previous studies 
that have been used to justify the study rationale, and whether the 
version changed during the conduct of the trial. If applicable, the 
report should describe what has changed between the relevant ver-
sions and the rationales for the changes. Where available, the report 
should include a regulatory marking reference, such as an unique 
device identifier, that requires a new identifier for updated versions 
of the device47.

CONSORT-AI 5 (ii) Extension: Describe how the input data were 
acquired and selected for the AI intervention. Explanation. The 
measured performance of any AI system may be critically depen-
dent on the nature and quality of the input data48. A description 
of the input-data handling, including acquisition, selection and 
pre-processing before analysis by the AI system, should be pro-
vided. Completeness and transparency of this description is inte-
gral to the replicability of the intervention beyond the clinical 
trial in real-world settings. It also helps readers identify whether 
input-data-handling procedures were standardized across trial sites.

CONSORT-AI 5 (iii) Extension: Describe how poor-quality or 
unavailable input data were assessed and handled. Explanation. 
As with CONSORT-AI 4a (ii), ‘input data’ refers to the data required 
by the AI intervention to serve its purpose. As discussed in item 

4a (ii), the performance of AI systems may be compromised as a 
result of poor quality or missing input data49 (for example, exces-
sive movement artifact on an electrocardiogram). The trial report 
should report the amount of missing data, as well as how this was 
identified and handled. The report should also specify if there was a 
minimum standard required for the input data and, where this stan-
dard was not achieved, how this was handled (including the impact 
on, or any changes to, the participant care pathway).

Poor quality or unavailable data can also affect non-AI interven-
tions. For example, sub-optimal quality of a scan could affect a radi-
ologist’s ability to interpret it and make a diagnosis. It is therefore 
important that this information is reported equally in the control 
intervention, where relevant. If this minimum quality standard was 
different from the inclusion criteria for input data used to assess 
eligibility pre-randomization, this should be stated.

CONSORT-AI 5 (iv) Extension: Specify whether there was 
human–AI interaction in the handling of the input data, and 
what level of expertise was required of users. Explanation. A 
description of the human–AI interface and the requirements for 
successful interaction when input data are handled should be pro-
vided — for example, clinician-led selection of regions of interest 
from a histology slide that is then interpreted by an AI diagnos-
tic system50, or an endoscopist’s selection of a colonoscopy video 
clips as input data for an algorithm designed to detect polyps28. 
A description of any user training provided and instructions for  
how users should handle the input data provides transparency and 
replicability of trial procedures. Poor clarity on the human–AI inter-
face may lead to lack of a standard approach and may carry ethical 

Assessed for elibibility at participant level

Assessed for elibibility at input data level

Excluded (n = )
• Not meeting participant level inclusion criteria (n = )
• Declined to participate (n = )
• Other reasons (n = )

Excluded (n = )
• Not meeting participant level inclusion criteria (n = )
• Declined to participate (n = )
• Other reasons (n = )

Allocated to intervention (n = )
• Received allocated intervention (n = )
• Did not receive allocated intervention
  (give reasons) (n = )
• Missing or inadequate input data (n = )

Allocated to intervention (n = )
• Received allocated intervention (n = )
• Did not receive allocated intervention
  (give reasons) (n = )
• Missing or inadequate input data (n = )

Randomisation (n = )

4a (i)

4a (ii)

13b

Enrollment

Allocation

Follow-up

Lost to follow-up (give reasons) (n = )
• Discontinued intervention
  (give reasons) (n = )
• Missing or inadequate input data (n = )

Lost to follow-up (give reasons) (n = )
• Discontinued intervention
  (give reasons) (n = )
• Missing or inadequate input data (n = )

13b

Analysis

Lost to follow-up (give reasons) (n = )
• Discontinued intervention
  (give reasons) (n = )

Lost to follow-up (give reasons) (n = )
• Discontinued intervention
  (give reasons) (n = )

13b

Fig. 1 | CONSORT 2010 flow diagram — adapted for AI clinical trials. CONSORT-AI 4a (i): State the inclusion and exclusion criteria at the level of 
participants. CONSORT-AI 4a (ii): State the inclusion and exclusion criteria at the level of the input data. CONSORT 13b (core CONSORT item): For each 
group, losses and exclusions after randomization, together with reasons.
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implications, particularly in the event of harm51,52. For example, it 
may become unclear whether an error case occurred due to human 
deviation from the instructed procedure, or if it was an error made 
by the AI system.

CONSORT-AI 5 (v) Extension: Specify the output of the AI inter-
vention. Explanation. The output of the AI intervention should be 
clearly specified in the trial report. For example, an AI system may 
output a diagnostic classification or probability, a recommended 
action, an alarm alerting to an event, an instigated action in a 
closed-loop system (such as titration of drug infusions) or another 
output. The nature of the AI intervention’s output has direct impli-
cations on its usability and how it may lead to downstream actions 
and outcomes.

CONSORT-AI 5 (vi) Extension: Explain how the AI interven-
tion’s outputs contributed to decision-making or other elements 
of clinical practice. Explanation. Since health outcomes may also 
critically depend on how humans interact with the AI intervention, 
the report should explain how the outputs of the AI system were 
used to contribute to decision-making or other elements of clinical 
practice. This should include adequate description of downstream 
interventions that can affect outcomes. As with CONSORT-AI 5 (iv),  
any effects of human–AI interaction on the outputs should be 
described in detail, including the level of expertise required to 
understand the outputs and any training and/or instructions pro-
vided for this purpose. For example, a skin cancer detection sys-
tem that produced a percentage likelihood as its output should be 
accompanied by an explanation of how this output was interpreted 
and acted upon by the user, specifying both the intended pathways 
(for example, skin lesion excision if the diagnosis is positive) and 
the thresholds for entry to these pathways (for example, skin lesion 
excision if the diagnosis is positive and the probability is >80%). 
The information produced by comparator interventions should be 
similarly described, alongside an explanation of how such informa-
tion was used to arrive at clinical decisions on patient management, 
where relevant. Any discrepancy in how decision-making occurred 
versus how it was intended to occur (that is, as specified in the trial 
protocol) should be reported.

Results
CONSORT-AI 19 Extension: Describe results of any analysis 
of performance errors and how errors were identified, where 
applicable. If no such analysis was planned or done, explain why 
not. Explanation. Reporting performance errors and failure case 
analysis is especially important for AI interventions. AI systems 
can make errors that may be hard to foresee but that, if allowed 
to be deployed at scale, could have catastrophic consequences53. 
Therefore, reporting cases of error and defining risk-mitigation 
strategies are important for informing when, and for which popula-
tions, the intervention can be safely implemented. The results of any 
performance-error analysis should be reported and the implications 
of the results should be discussed.

Other information
CONSORT-AI 25 Extension: State whether and how the AI inter-
vention and/or its code can be accessed, including any restric-
tions to access or re-use. Explanation. The trial report should make 
it clear whether and how the AI intervention and/or its code can be 
accessed or re-used. This should include details about the license 
and any restrictions to access.

Discussion
CONSORT-AI is a new reporting-guideline extension devel-
oped through international multi-stakeholder consensus. It aims  
to promote transparent reporting of AI intervention trials and 

is intended to facilitate critical appraisal and evidence synthesis.  
The extension items added in CONSORT-AI address a number  
of issues specific to the implementation and evaluation of AI  
interventions, which should be considered alongside the core 
CONSORT 2010 checklist and other CONSORT extensions54.  
It is important to note that these are minimum requirements and 
there may be value in including additional items not included 
in the checklists in the report or in supplementary materials 
(Supplementary Table 2).

In both CONSORT-AI and its companion project SPIRIT-AI, a 
major emphasis was the addition of several new items related to the 
intervention itself and its application in the clinical context. Items 
5 (i)–5 (vi) were added to address AI-specific considerations in 
descriptions of the intervention. Specific recommendations were 
made pertinent to AI systems related to algorithm version, input 
and output data, integration into trial settings, expertise of the users 
and protocol for acting upon the AI system’s recommendations. It 
was agreed that these details are critical for independent evaluation 
or replication of the trial. Journal editors reported that despite the 
importance of these items, they are currently often missing from 
trial reports at the time of submission for publication, which pro-
vides further weight for their inclusion as specifically listed exten-
sion items.

A recurrent focus of the Delphi comments and consensus group 
discussion was the safety of AI systems. This was in recognition 
that AI systems, unlike other health interventions, can unpredict-
ably yield errors that are not easily detectable or explainable by 
human judgement. For example, changes to medical imaging that 
are invisible, or appear random, to the human eye may change 
the likelihood of the diagnostic output entirely55,56. The concern 
is that given the theoretical ease with which AI systems could be 
deployed at scale, any unintended harmful consequences could be 
catastrophic. CONSORT-AI item 19, which requires specification 
of any plans to analyze performance errors, was added to emphasize 
the importance of anticipating systematic errors made by the algo-
rithm and their consequences. Beyond this, investigators should 
also be encouraged to explore differences in performance and error 
rates across population subgroups. It has been shown that AI sys-
tems may be systematically biased toward different outputs, which 
may lead to different or even unfair treatment, on the basis of extant 
features53,57–59.

The topic of ‘continuously evolving’ AI systems (also known  
as ‘continuously adapting’ or ‘continuously learning’ AI systems)  
was discussed at length during the consensus meeting, but it was 
agreed that this be excluded from CONSORT-AI. These are AI 
systems with the ability to continuously train on new data, which 
may cause changes in performance over time. The group noted 
that, while of interest, this field is relatively early in its develop-
ment without tangible examples in healthcare applications, and 
that it would not be appropriate for it to be included in CONSORT- 
AI at this stage60. This topic will be monitored and will be revis-
ited in future iterations of CONSORT-AI. It is worth noting that  
incremental software changes, whether continuous or iterative, 
intentional or unintentional, could have serious consequences on 
safety performance after deployment. It is therefore of vital impor-
tance that such changes be documented and identified by software 
version and that a robust post-deployment surveillance plan is  
in place.

This study is set in the current context of AI in health; there-
fore, several limitations should be noted. First, there are relatively 
few published interventional trials in the field of AI for healthcare; 
therefore, the discussions and decisions made during this study 
were not always supported by existing examples of completed tri-
als. This arises from our stated aim of addressing the issues of poor 
reporting in this field as early as possible, recognizing the strong 
drivers in the field and the specific challenges of study design  
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and reporting for AI. As the science and study of AI evolves, we  
welcome collaboration with investigators to co-evolve these report-
ing standards to ensure their continued relevance. Second, the 
literature search of AI RCTs used terminology such as ‘artificial  
intelligence’, ‘machine learning’ and ‘deep learning’, but not terms 
such as ‘clinical decision support systems’ or ‘expert systems’, which 
were more commonly used in the 1990s for technologies under-
pinned by AI systems and share risks similar to those of recent 
examples61. It is likely that such systems, if published today, would 
be indexed under ‘artificial intelligence’ or ‘machine learning’; how-
ever, clinical decision support systems were not actively discussed 
during this consensus process. Third, the initial candidate items list 
was generated by a relatively small group of experts consisting of 
SteeringGroup members and additional international experts; how-
ever, additional items from the wider Delphi group were taken for-
ward for consideration by the consensus group, and no new items 
were suggested during the consensus meeting or post-meeting 
evaluation.

As with the CONSORT statement, the CONSORT-AI exten-
sion is intended as a minimum reporting guidance, and there are 
additional AI-specific considerations for trial reports that may 
warrant consideration (Supplementary Table 2). This extension is 
aimed particularly at investigators and readers reporting or apprais-
ing clinical trials; however, it may also serve as useful guidance  
for developers of AI interventions in earlier validation stages of  
an AI system. Investigators seeking to report studies develop-
ing and validating the diagnostic and predictive properties of 
AI models should refer to TRIPOD-ML (Transparent Reporting 
of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis–Machine Learning) and STARD-AI (Standards for 
Reporting Diagnostic Accuracy Studies–Artificial Intelligence), 
both of which are currently under development32,62. Other potentially 
relevant guidelines, which are agnostic to study design, are regis-
tered with the EQUATOR Network63. The CONSORT-AI extension 
is expected to encourage careful early planning of AI interventions 
for clinical trials and this, in conjunction with SPIRIT-AI, should 
help to improve the quality of trials for AI interventions. The devel-
opment of the CONSORT-AI guidance does not include additional 
items within the discussion section of trial reports. The guidance 
provided by CONSORT 2010 on trial limitations, generalizability 
and interpretation were deemed to be translatable to trials for AI 
interventions.

There is also recognition that AI is a rapidly evolving field, and 
there will be the need to update CONSORT-AI as the technology, 
and newer applications for it, develop. Currently, most applications 
of AI involve disease detection, diagnosis and triage, and this is likely 
to have influenced the nature and prioritization of items within 
CONSORT-AI. As wider applications that utilize ‘AI as therapy’ 
emerge, it will be important to continue to evaluate CONSORT-AI 
in the light of such studies. Additionally, advances in computational 
techniques and the ability to integrate them into clinical workflows 
will bring new opportunities for innovation that benefits patients. 
However, they may be accompanied by new challenges around 
study design and reporting. In order to ensure transparency, mini-
mize potential biases and promote the trustworthiness of the results 
and the extent to which they may be generalizable, the SPIRIT-AI 
and CONSORT-AI Steering Group will continue to monitor the 
need for updates.

Data availability
Data requests should be made to the corresponding author and 
release will be subject to consideration by the SPIRIT-AI and 
CONSORT-AI Steering Group.
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